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The small perturbation method is used to construct, equations for two approximations 
with respect to the Peclet number for the problem of mass exchange in a porous 
medium with mass sources. 

To describe certain heat--mass exchange processes in porous media such as adsorption, 
washing of soils and deposits, and heat transfer in heterogeneous media a mathematical model 
is used. Such a model assumes the existence of twophases, one of which determines the matter 
concentration in the flow portion of the porous body, while the second defines the concen- 
tration in stagnant regions. Equations for such processeshavebeen derived several times 
[i-4] by various methods. We will use the equations in the form 

Pe [acla~ § q~Oala'c § oc/az  - -  w (a, c)] = O~claz ~, 

Pe ~ aala.~ = n [c - f (a~], 

( l )  

(2) 

usually employed inadsorptiontheory [i], and consider a possible chemical reaction, in the 
generalcase dependent on theconcentrations a and c. Here ~=tu~8, n=kP/D, ~= (I--8)/8, , and 
the factors before the functions f and w which appearupon dedimensionalization will be in- 
cluded within those functions themselves. We will call the function a = f-1(c) the sorption 
isotherm. The right side of Eq. (2) represents a deviation from equilibrium characterizing 
the isotherm, and is the moving force which produces a change in the concentration a toward 
equilibrium, which is described by Eq. (2). The right side of Eq. (i) defines the change in 
concentration in the flowregion due tolongitudinal diffusion, which isbalanced on the 
left side by a corresponding transient term, the influx (efflux) of matter from stagnant 
zones (~aa/aT), convective transport (~c1~z) and change in concentration due to chemical 
conversion w. 

It is known [5] that to describe heat-mass exchange in porous bodies the coefficients 
of the model can be considered constants only at some time after the commencement of the 
process, although the problemwith constant D and k for the entire time interval is widely 
used in practical applications and~inmany cases conveys the pattern of heat-mass exchange 
properly. We will thereforeassume D = const and k = const. In some cases, for example, 
in treating washing of~ precipitates [3] the presence of material in a third phase is con- 
sidered -- on precipitate particles or the boundaries between stagnant zones and the flow 
region. In this case a third equation of the form of Eq. (2) and corresponding terms in 
Eqs. (I) and (2) are usually added. The presence of a third phase will not be considered 
here, since the overallpatternof constructing a solution remains unchanged; however, the 
expressions become more cumbersome. 

The boundary conditions for Eq. (i) will be taken in the form 

~c_[ ~ P e [ c - - R ( ~ ) ] .  O___~c, = O. (3)  
OZ ~z=O az [z=1 

where the  f u n c t i o n  R(T) c h a r a c t e r i z e s t h e  f low of  m a t e r i a l  e n t e r i n g  the  porous r e g i o n  of  the  
p o r o u s b o d y  through the i n i t i a l  s e c t i o n .  The second c o n d i t i o n ,  Eq. (3) ( a t  the  o u t p u t ) ,  i s  
the  c o n v e n t i o n a l  D a n k w e r s t c o n d i t i o n .  We a l s o  s p e c i f y  i n i t i a l  c o n d i t i o n s  in  the  q u i t e  ge ne r a l  
form 

c1~=o = K (z), al~=o = L (z). ( 4 )  
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To construct two approximations with respect to the small parameter Pe it is necessary 
that the function R be differentiable. We will also assume that the function f is differen- 
tiable and monotonically increasing, i.e., f'(a) > 0, and thus has a reciprocal function f-1. 
We also assume f(0) = 0. 

It should be notedthat thesmallness of the parameter Pe makes numerical solution of 
the problem of Eqs. (1)'(4) difficult, since a very small step in T, is required, and to 
reach times of: the order t ~ %/u, at which the changes in concentrations a and c most in- 
teresting in practice occun, requires a hugh number of steps. Computation errors then 
become unavoidable, so that the perturbation mes becomes very useful in such problems. 

We will seek a solution of Eqs. (1)-(4) in the form of the following expansions: 

c = [o (z, ~ + Pe/i(z,  x)-+ . . . .  a = Fo (z, ~) + PeFi(z ,  ~ + .... (5)  

which when substituted in the equations and boundary conditions, after terms of like order in 
Pe are grouped, produce the equations 

OVo / Oz ~ = o, to = I (Fo), 
OFO 

OV~Oz ~ = OfOo__..~ _k_ q ~  afoot, w (Fo, fo), n [[~ -- F f  (Fo)l = r ~'O'~ 

(6) 

(7) 

oV, o h +  § - - I  F~ -- [ h _ ~ OF~ a[, aw aw 
:az~ a,~ ~ az aa ~=ro;~=~o ~ ~=Fo:~=ro 

(8) 

and boundary equations 

Or-~ = O, O:---L = Io--  R, O[----L~ = I~ at z = O, (9)  
Oz Oz Oz 

OfdOz=O, i = 0 ,  I, 2, a t .  z =  1, (10)  

which generalize the previously obtained expressions of[6] to the nonlinear case. The 
problem of Eqs. (6)-(10) is singu!ar-perturhed:[7, 8]. In order to obtain the initial con- 
ditions for the problem, their solution must be merged with the solution of the internal 
problem (i7)-(22), which describes the solution of the general problem at times of the order 
of T/Pe [6]. 

Equation: (6) and boundary conditions~(9), (i0) indicate that the function fo is dependent 
solelyon ~:/0 = A (~), while F0 is related to f0 by the equilibrium sorption equation 
Fo(X)=[-i[ A (3]- With consideration of this fact, from Eq. (7) we find 

I~ = ( A ' - -  w +  ~F~) (z - -  I)U2 + B (~), n l [ ~ -  [' (Fo)Fa] = ~F~,  (11)  

where A(T) and B(T) are functions of time yet to be determined. From the first expression 
of Eq. (ii) and the boundary condition for the function fl at z = 0, we find the equation for 
definition of the function A(T): 

A' ('0 + A ('~) + ,~ {:-~ [A ('01}; = w {t-' IX ('0l, A (-c)} + R ('0. (12)  

We obtain an equation for the function B(T) by integration of Eq. (8) between the limits [0, 
~] withuse of previously obtained relationships (ii), (12) and boundary conditions (9), (i0): 

1 
B' + B +  ---~-(R'--A')+ 

I cp + { [ B  + ---~(R--A)--cpFo(~)/nI/[[~} 
(13) 

[ + Ow B +  (R--A)  + Oa 
ac 

[ i ]i B + - - 6  ( e - - A ) -  cpFo(~)/n # . 

We note that Eq. (13) is linear in the function B(~): 
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Thus, we have obtained ordinary differential equations from which we can find the 
functions A and B and thus obtain two approximations in the Peclet number for the problem 
of Eqs. (1)-(4) for the scales of practical interest, of the order of Z/u. It remains only 
to find the initial conditions for Eqs. (12), (13). To do this, we made use of certain 
characteristics of the internal solution. We rewrite Eqs. (I), (2), introducing the "in- 
ternal" time T = T/Pe: 

Oc/aT -F ~aa/aT  + pe [Oc/Oz - -  w (a, c)] --:- O~c/az "-, 

9aa / a T  = n [c - -  f (a)]. 

(14) 

(i5) 

We seek a solution to the problem of Eqs. (14), (15), (3), (4) in the form of expansions 

c = go (z, T) + Pe gt (z, T)  -k . . . .  a = Go (z, T ) §  T) ~- . . . .  (16) 

which when substituted in the equations and boundary conditions produce for the functions 
gi, Gi, i = 0, I, the problem 

8go / OT + ~OCo / OT = O~go / Oz 2, (17) 

~OCo / OT = n [go -- f (Go)l, (18) 

Ogo/ OZl~=o: ~ = o, 

Og 1 / OT -}- (~C 11 OT + Ogo ! Oz : O~gl I Oz ~ + w (go, Co), 

q~OG~ / O T  = n [gl ~-  C~:' (Go)I, 

(19) 

(20) 

(2i) 

Og~/Ozl~=o = go - -  R (0), Ogl / Oz I~=~ = O. (22) 

The initial conditions for the problem of Eqs. (17)-(19) will be the original Eq. (4), while 
for the problem of Eqs. (20)-(221) we have zero initial conditions. We first integrate Eq. 
(17) over z with limits [0, i], and then over T with limits [0, T]. Using condition (19) 
and the initial conditions, we obtain 

i 1 

.[ [go + 9Col dz - -  .[ IK (z) + 9L (z)ldz = K* § 9L* - M = const. ( 2 3 )  
0 t) 

From the principle of limiting merger [8] we have go(Z, oo)= [o(Z, 0) ---- A (0) = const (z); Go(z, co) 
= F, (0)--- c0nst (z) �9 Performing the limiting transition T § ~ in Eq. (23) and using the relation- 
ship [iF 0 (0)]---- A(0), we arrive at the equation 

~ [ - i  [A (0)] = M - -  A (0) ( 2 4 )  

for definition of the initial condition A (0). With the conditions imposed on the function f 
Eq. (24) has a single root in the interval A(0)E(0, M) which can be found, for example, 
graphically. A similar approach is used" for finding B(0), with Eq. (23) replaced by the 
expression 

]~ Z 2 ~ Z ~ 
jf [el + ~cl - y (go + ~Co)j dz = TR (0) --  ~ - / -  [K (z) + ~L (z)J d~ + 
0 0 

T l (25)  

+ .i d~ .[ {w [Co (z, ~), go (z, ~)j - .  go (z, ~)} dz. 
0 0 

S u b s t i t u t i n g  t h e  e x p r e s s i o n s  o b t a i n e d  f o r  fo  and  f t  i n  Eq. (5 )  and  r e w r i t i n g  t hem i n  
internal variables, we find 

c ,-, A (0) -~ "Pe {TA" (0) -k [R (0) - -  A (0)] (z - -  l) ~/2 + B (0)} +. .... (26)  

which in view of the merger condition gives an asymptotic expansion for the functions go, gl. 
There is a similar expansion for the function a. Using this together with Eq. (26), we 
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obtain from Eq. 

dltion B(O): 
(25) in the limit T § = an expression for definition of the initial con- 

B (0) = A (0) R(O) { 
6 + M +  i ! dT .[[w{Go(z, T), go(z, T)}--~,{Fo(O), A(0)}+ 

o o 

+ A (0) - -  go (z, T)I dz-- ~ T [K (z) + ~pL (z)l dz + nt'[Fo ( 0 ) l  ' [Fo (0)l " 
(27) 

Unfortunately, it is only at w = c that B(0) can be determined without solution of the in- 
ternal problem (17)-(19), (4), which is nonlinear in general form. However, we require only 
the integral characteristicof the function go, which simplifiesthe problem somewhat, since 
when approximate methods are used it is often the ease that the integral characteristics can 
be obtained more precisely than local ones. If the functionf is linear, f = ma/n, then the 
solution of the problem of Eqs. (17)-(19), (4) can be represented in the form of series 

go=So+ ]~s~(T) cos(zkz), Go~- So+ s S~(T)cos(~kz), (28) 
k = l  h = !  

where 

So ~ (mL*-- nk*) exp [-- T (m/ep + n)] + nM 
m +  qm , S o : M - - ~ S o ,  (29) 

and the functions Sk(T), Sk(T) are solutions of the equations 

-d(sk+ ~Sh)/dT = ---~k~sk, ~dSk/dT = ns~--tnSk 

for initial conditions 

1 1 

sk (0) = s o = 2 [K  (z) cos (=kz) dz, Sk (0) = S~ 2 (L (z) cos (~kz) dz, 

which can easily be proved by using the orthogonality of the functions I, cos(nz), cos(2~z)... 
on the interval [0, i]. The problem of Eqs. (30), (31) has a solution 

sh (T) = exp (P2T) [m (sO+ q~S ~ + ~ps ~ p~I/A (p~) + 

r ~, P211 (P2), +exp(p~T)[m(s~+cpS ~  s o a h k 

S~ (r)  = exp (p~T) [ns~+ ~S~ (p~+ ~x~k ~ + n)]/A (p~) q- 

-[-exp (p~T) [ns ~ + *S~ (p~+ n~k'-}- n)]/A (p~), 

(3o) 

(31) 

(32) 

where 

p'~,2= {-- (m + ~ k  ~ + n~) zh [(m + ~z~k~+ n~) ~ --4m~k~lr12}t2% 

A (p~.2) =2~p~.2+ m + qm + rp~x~k 2. (33) 

It can easily be proved that for ~>0, m>0, n>0 the numbers P~,2 will always be real and 
negative, i.e., the terms of the sum in Eq. (28) decrease with time. Thus, in this special 
case one can calculate B(0),and hence the problem of the second approximation with respect 
to Peeler number Pe can be considered formulated. The function w(a, c) can be quite 
complex in form, and calculation of the integralin Eq. (27) will beaccompanied by definite 
difficulties. The situation simplifies significantlywhenthematerialis uniformly distri- 
buted within the porous body at the initial moment, i.e., K(z) = K0 = const, L(z) = L0 = 
const, which is often the case in practical problems. In this ca~& all s~,, S~ vanish, the 
series in the expressions of Eq. (28) vanish, the functions g~, Go are simple exponentials, 
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Fig. i. Kinetics of impurity 
extraction from the flow 
region of a porous precipitate 
for E = 0.5: i) r = 0.5 and b = 
i; 2) 0.5 and 2; 3) 1 and 2; 4) 
1 and I. 

(29), and in particular, at nK0 = mL0 they are constants, in which case (which is also Eq. 
quite widespread) the integral with w in Eq. (27) becomes equal to zero. We note that 
computations are also significantly simplified for a nonlinear isotherm, if K(z) = Ko = 
const, L(z) = L0 = const, sincein this case Eqs. (17), (18) and conditions (19), (4) are 
satisfied by functions go and Go which depend solely on T. We have 

G0 

f T = ~ dx/[M -- ~ x - -  [ (x)], go = M . 9 6 o  (34) 
n . 

Lo 

and, just as before, if Ko and Lo are related by the sorption isotherm K0 = f(L0), the 
integral in Eq. (27) vanishes, since the solution of the problem of Eqs. (I~)-(19), (4) will 
be the functions go = K0 and Go = L0. 

When the initial functions dependon z it is convenient to seek the solution of the 
problem of Eqs. (17)-(19), (4) by the Galerkin method in the form of Eq. (28). The first 

equation of Eq. (30) retains its form, while the second is replaced by: 

q~dS~/dT == n [sh-- Fh (So, $1 . . . .  S,v)], 
1 N 

F'  : ~ h [ ~ IS 0 + l ] S[(T) COS(~Zi)] COS(~z~)Hz , (35) 
0 t = I  

k : 0 , 1 ,  2 . . . . .  N; N0=l, ~k=2,  k = l ,  2, . . . ,  N, 

where  N i s  t h e  number o f  f u n c t i o n s  cos  ( ~ z ) ,  c o s  ( 2 ~ z ) ,  u s e d  i n  t h e  G a l e r k i n  me thod .  The 
i n i t i a l  c o n d i t i o n s  f o r  t h e  n o n l i n e a r  s y s t e m  (35) a r e  d e f i n e d  by Eq. (31)  w i t h  c o r r e s p o n d i n g  
change  i n  n o r m a l i z a t i o n  a t  k = 0. The s y s t e m  o f  e q u a t i o n s  o b t a i n e d  h a s  an i n t e g r a l  so = M -  
�9 ~So, so t h a t  f o r  a g i v e n  N t h e r e  a r e  i n  f a c t  2N + 1 i n d e p e n d e n t  e q u a t i o n s .  

Thus ,  b a s i c  e q u a t i o n s  and i n i t i a l  c o n d i t i o n s  h a v e  b e e n  o b t a i n e d  f o r  t h e  f i r s t  two 
f u n c t i o n s  o f  t h e  e x t e r n a l  e x p a n s i o n  i n  t h e  s m a l l  p a r a m e t e r  Pe f o r  c a s e s  o f  p r a c t i c a l  i n t e r e s t .  
The p r o b l e m  f o r  t h e  z e r o e t h  a p p r o x i m a t i o n  f o ( z ,  r )  = A(T) r e d u c e s  to  s o l u t i o n  o f  Eq. (12)  
w i t h  an a d d i t i o n a l  c o n d i t i o n  d e f i n e d  by  Eq. ( 2 4 ) :  

A' (T) -~- A (T) -[- q) {[-1 [A (~)]}~ = w {f-1 [A ('t')], J (T)} -~ R (T), (36) 

I 

cp[ "I [A (0)] = .[ [K (z) + r (z)] d z - - A  (0). 
0 

(37) 
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The concentrations of material inthe stagnant zoneand flow region are related by the 
sorption isotherm: F0(T) = f-I[A(T)] . To find the first approximation functions fl and FI, 
defined by Eq.(ll), the main unknownfunction is B(T) is considered known, Theinitial~ 
condition can befound with Eq. (27). Only at w = c does this expression permit direct 
determination of B(O), while in other cases it is necessary tocalculate an integral containing 
the zeroeth approximation function for the "internal" solution Go, go. �9 The functions Go and 
go are calculable in two cases: i) for a linear isotherm�9 f = ma/n, where the solution is 
defined by Eqs. (28)-(33); 2) for the special (but quite widespread) initial conditions 
K(z) = K0 = const,�9 = L0 = const, In these cases the functions go and Go are defined 
by Eq. (34), the integral inEq. (27) becomes single, andwhen the initial �9 
are related by the equilibrium sorption isotherm Ko = f(Lo) in general vanishes. In the 
general�9 go and Go �9 be found by the Galerkin method in the form of Eq. (28) using 
Eq. (35) and the first expressions of�9 Eq. �9 It should be noted that the proposed method 
can be applied to morecomplex cases with no complications inprinciple, for example, by 
taking the sorption isotherm in a more general form, considering the possibility of depend- 
ence of w on z in explicit form, in addition to a and c. In the latter case Eq. (12) is 
replaced by: 

A'+  A + R + .f 
0 

w [A A z} dz. (38) 

As an example of �9 proposed method, we will consider the first approxi- 
mation of washing of a precipitate with f(a) being a Langmuir-type dependence [3]: 

f (a) = ra/(a -~ b). (39) 

We take the functions Kand �9 equal tounity, and will not consider chemical reaction in the 
precipitate, w = 0, and take R = 0, i.e., at the input to the precipitate a pure washing 
liquid is supplied. In this case the quantity A(0) is given by 

A (0) =0,5 {(1/e + ~b q- r) -- [(1/8 q- ~b q- r)~--4r/e]U=}, (40) 

easily derivable from Eq. �9 and the solution of Eq. (12) is 

(r - -  A) {r A (0)1 r [ A [ r  - -  A (0)l (41) 

Some curves describing Eq. (41) for various parameter values are shown in Fig. i. The function 
B(T) is found in a similar manner, but willnot be presented because of its cumbersomeness. 
The internal solution of the zeroth approximation in Pe is foundwithquadrature (34), which 
with our isotherm (59) can be expressedin terms of elementary functions. 

NOTATION 

a, c, dimensionless�9 concentrations:in stagnant zones and flow region of porous 
body�9 D, dispersion�9 fi, Fi, external variables;gi, �9 G i, external variables; k, 
mass exchange: coefficient between stagnant zones and s region; K(z), L(z), dimensionless 
initial material concentrations in flow and stagnant zones; ~, precipitate thickness; Pe = u/ 
D, Pecletnumber; T = T/Pe, internal time; t,�9 dimensionlesstime and coordinate along 
layer; u, filtrationrate; z = x/l, dimensionless coordinate; e, fraction of flow region in 
total void volume of porous body; T, external time. 
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METHOD FOR CALCULATINGCONVECTIVE DRYING OF MOIST MATERIALS 

P. S. Kuts, V' Ya. Shklyar, 
and A. I. Ol'shanskii 

UDC 685.31.001.5 

The dependence of output of a drying apparatus in terms of evaporated moisture is 
obtained as a function of time and parameters and properties of the material being 
dried. Calculation results are compared with experiment. 

The basic quantity whichcharacterizes operation of drying apparatus is the quantity of 
water evaporated, which is usually determined from material balance equations. A method 
which would permit determination of this quantity from known or easily measured characteris- 
tics of the process and relate the engineering calculation of drying equipment output to the 
kinetics of drying is of practical interest. 

We will write the combined equation of thermal balance and heat exchange for the oper- 
ating conditionsof a convective drying apparatus 

du dTmt 
[ ~  (Th-- Tw_ ) + ~-(Th-- ~ )] F$ = rmoNT~ + rmo ~ T n + (Como-~ cr~n ~ ~ T n. (i) 

In accordance with the definition of the Stenton number, this parameter in the first 
and second drying periods can bewritten in the following manner: 

S t ~ r -  ~er _ T~--T2 f.~. S--t-- ~ , , ,_  TI--T2 f ( 2 )  

cpvp T c - - T w  F ' CpVp Th- -T  s F " 

With consideration of Eq. (2), we write Eq. (i) in the form 

I +  ~t Th - Ts 
, Sf_cr ~ 7 ~ w  ) ,t. - 1 [rtnoNTi cpvpf (T1--T~) . 

According to [i], for convective drying 

dTmt .q! ] 
~-rmo ~ x n q_ (Como-k qf f~)  ~ �9 (3) 

N u  __  St Rb) N,O.SZ. TI~- -TsN ,O .4a  
Nu cr - -  St cr = (1 + ' Th-- Tw " 

The drying rate in the first period can be expressed as 

(4) 

N = 127I . 

fl7oT I 

From the definition of the Rebinder number Rb, it follows that 

dTm t _  ~ r 
- -  Rb. dx ,d'~ c 

(5) 

(6) 
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